📱

Read on Your E-Reader

Thousands of readers get articles like this delivered straight to their Kindle or Boox. New articles arrive automatically.

Learn More

This is a preview. The full article is published at news.ycombinator.com.

WiFi DensePose: WiFi-based dense human pose estimation system through walls

WiFi DensePose: WiFi-based dense human pose estimation system through walls

By RuvnetHacker News: Front Page

A cutting-edge WiFi-based human pose estimation system that leverages Channel State Information (CSI) data and advanced machine learning to provide real-time, privacy-preserving pose detection without cameras. Privacy-First : No cameras required - uses WiFi signals for pose detection Real-Time Processing : Sub-50ms latency with 30 FPS pose estimation Multi-Person Tracking : Simultaneous tracking of up to 10 individuals Domain-Specific Optimization : Healthcare, fitness, smart home, and security applications Enterprise-Ready : Production-grade API with authentication, rate limiting, and monitoring Hardware Agnostic : Works with standard WiFi routers and access points Comprehensive Analytics : Fall detection, activity recognition, and occupancy monitoring WebSocket Streaming : Real-time pose data streaming for live applications 100% Test Coverage : Thoroughly tested with comprehensive test suite WiFi DensePose consists of several key components working together: ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ WiFi Router │ │ WiFi Router │ │ WiFi Router │ │ (CSI Source) │ │ (CSI Source) │ │ (CSI Source) │ └─────────┬───────┘ └─────────┬───────┘ └─────────┬───────┘ │ │ │ └──────────────────────┼──────────────────────┘ │ ┌─────────────▼─────────────┐ │ CSI Data Collector │ │ (Hardware Interface) │ └─────────────┬─────────────┘ │ ┌─────────────▼─────────────┐ │ Signal Processor │ │ (Phase Sanitization) │ └─────────────┬─────────────┘ │ ┌─────────────▼─────────────┐ │ Neural Network Model │ │ (DensePose Head) │ └─────────────┬─────────────┘ │ ┌─────────────▼─────────────┐ │ Person Tracker │ │ (Multi-Object Tracking) │ └─────────────┬─────────────┘ │ ┌───────────────────────┼───────────────────────┐ │ │ │ ┌─────────▼─────────┐ ┌─────────▼─────────┐ ┌─────────▼─────────┐ │ REST API │ │ WebSocket API │ │ Analytics │ │ (CRUD Operations)│ │ (Real-time Stream)│ │ (Fall Detection) │ └───────────────────┘ └───────────────────┘ └───────────────────┘ CSI Processor : Extracts and processes Channel State Information from WiFi signals Phase Sanitizer : Removes hardware-specific phase offsets and noise DensePose Neural Network : Converts CSI data to human pose keypoints Multi-Person Tracker : Maintains consistent person identities across frames REST API : Comprehensive API for data access and system control WebSocket Streaming : Real-time pose data broadcasting Analytics Engine : Advanced analytics including fall detection and activity recognition WiFi-DensePose is now available on PyPI for easy installation: # Install the latest stable version pip install wifi-densepose # Install with specific version pip install wifi-densepose==1.0.0 # Install with optional dependencies pip install wifi-densepose[gpu] # For GPU acceleration pip install wifi-densepose[dev] # For development pip install wifi-densepose[all] # All optional dependencies git clone https://github.com/ruvnet/wifi-densepose.git cd wifi-densepose pip install -r requirements.txt pip install -e . docker pull ruvnet/wifi-densepose:latest docker run -p 8000:8000 ruvnet/wifi-densepose:latest Python : 3.8 or higher Operating System : Linux (Ubuntu 18.04+), macOS (10.15+), Windows 10+ Memory : Minimum 4GB RAM, Recommended 8GB+ Storage : 2GB free space for models and data Network : WiFi interface with CSI capability GPU : Optional but recommended (NVIDIA GPU with CUDA support) # Install the package pip install wifi-densepose # Copy example configuration cp example.env .env # Edit configuration (set your WiFi interface) nano .env from wifi_densepose import WiFiDensePose # Initialize with default configuration system = WiFiDensePose() # Start pose estimation system.start() # Get latest pose data poses = system.get_latest_poses() print(f"Detected {len(poses)} persons") # Stop the system system.stop() # Start the API server wifi-densepose start # Start with custom configuration wifi-densepose -c...

Preview: ~500 words

Continue reading at Hacker News

Read Full Article

More from Hacker News: Front Page

Subscribe to get new articles from this feed on your e-reader.

View feed

This preview is provided for discovery purposes. Read the full article at news.ycombinator.com. LibSpace is not affiliated with Hacker News.

WiFi DensePose: WiFi-based dense human pose estimation system through walls | Read on Kindle | LibSpace